Decoding Movement Trajectories Through a T-Maze Using Point Process Filters Applied to Place Field Data from Rat Hippocampal Region CA1

نویسندگان

  • Yifei Huang
  • Mark P. Brandon
  • Amy L. Griffin
  • Michael E. Hasselmo
  • Uri T. Eden
چکیده

Firing activity from neural ensembles in rat hippocampus has been previously used to determine an animal's position in an open environment and separately to predict future behavioral decisions. However, a unified statistical procedure to combine information about position and behavior in environments with complex topological features from ensemble hippocampal activity has yet to be described. Here we present a two-stage computational framework that uses point process filters to simultaneously estimate the animal's location and predict future behavior from ensemble neural spiking activity. First, in the encoding stage, we linearized a two-dimensional T-maze, and used spline-based generalized linear models to characterize the place-field structure of different neurons. All of these neurons displayed highly specific position-dependent firing, which frequently had several peaks at multiple locations along the maze. When the rat was at the stem of the T-maze, the firing activity of several of these neurons also varied significantly as a function of the direction it would turn at the decision point, as detected by ANOVA. Second, in the decoding stage, we developed a state-space model for the animal's movement along a T-maze and used point process filters to accurately reconstruct both the location of the animal and the probability of the next decision. The filter yielded exact full posterior densities that were highly nongaussian and often multimodal. Our computational framework provides a reliable approach for characterizing and extracting information from ensembles of neurons with spatially specific context or task-dependent firing activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Representation of Hippocampal Place Cells in a T-Maze with an Aversive Stimulation

The hippocampus contains place cells representing spaces in an environment, and these place cells have been suggested to play a fundamental role in the formation of a cognitive map for spatial processing. However, how alterations in the firing patterns of place cells in response to aversive events encode the locations tied to these aversive events is unknown. Here, we analyzed spiking patterns ...

متن کامل

Retrospectively and prospectively modulated hippocampal place responses are differentially distributed along a common path in a continuous T-maze.

Hippocampal place responses can be prospectively or retrospectively modulated by the animal's future or prior trajectory. Two main hypotheses explain this. The "multiple-map hypothesis" switches between different maps for different trajectories (rate remapping). In contrast, in the "buffer hypothesis," the hippocampus encodes an ongoing representation that includes the recent past and/or the im...

متن کامل

A new rat-compatible robotic framework for spatial navigation behavioral experiments.

BACKGROUND Understanding the neural substrate of information encoding and processing requires a precise control of the animal's behavior. Most of what has been learned from the rodent navigational system results from relatively simple tasks in which the movements of the animal is controlled by corridors or walkways, passive movements, treadmills or virtual reality environments. While a lot has ...

متن کامل

A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells.

The problem of predicting the position of a freely foraging rat based on the ensemble firing patterns of place cells recorded from the CA1 region of its hippocampus is used to develop a two-stage statistical paradigm for neural spike train decoding. In the first, or encoding stage, place cell spiking activity is modeled as an inhomogeneous Poisson process whose instantaneous rate is a function ...

متن کامل

The Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area

The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2009